A Novel Fused Phosphorus Heterocycle: 4-(1¢ 2¢ 3¢ 4¢Tetrahydro-1, 3, 2-benzodiazaphosphorin-2¢sulfide)-3, 4b, 4athiazphosphaphenanthridine Derivative

Jun Min HUANG*, Hui CHEN, Ru Yu CHEN

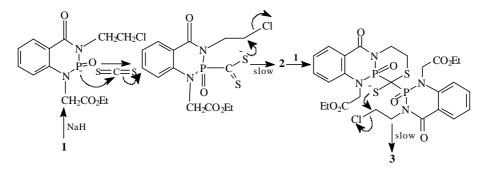
Institute of Elemento-Organic Chemistry, National Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

Abstract: The first example of fused phosphorus heterocyclic 4- $[1'-(\mathbf{b}-bromoethyl)-4'-oxo-3'-prop yl-1', 2', 3', 4'-tetrahydro-1, 3, 2-benzodiazaphosphorin-2'-sulfide]-1, 2, 3, 4, 4a, 4b, 5, 6-octahydro -6-oxo-5-propyl-3, 4b, 4a-thiazphosphaphenanthridine 4a, 2'-dioxide was synthesized in excellent yield by refluxing a mixture of 1(2-bromoethyl)-2, 3dihydro-3-propyl-1, 3, 2-benzodiazaphos phorin-4(1$ *H*)-one 2-oxide with carbon disulfide in benzene in the presence of triethylamine.

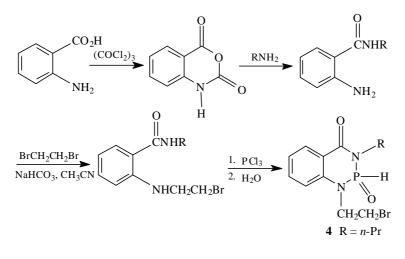
Keywords: Synthesis, [3, 4b, 4a] thiazphosphaphenanthridine.

Organophosphorus compounds are ubiquitous in nature and they have broad applications in the fields of agriculture and medicine¹⁻⁴. There has been a considerably growing interest in heterocyclic compounds due to their pharmaceutical importance and extensive application in organic synthesis, and the application of heterocycles is suggested to enhance the biological activity and/or offer other diverse properties⁵⁻⁷. In the previous work⁸, we have reported that 11-ethoxycarbonylmethyl-6-oxo-3, 4, 6, 11-tetrahydro-1thio-[1, 4, 3] thiazaphosphorino [3, 4-b][1, 3, 2] benzodiazaphosphorine 12-oxide **2** was synthesized by the addition and ring-closure reaction of 3-(2-chloroethyl)-2, 3-dihydro-1ethoxycarbonylmethyl-1, 3, 2-benzodiazaphosphorin-4(1*H*)-one 2-oxide **1** with carbon disulfide in the presence of sodium hydride, as shown in **Scheme 1**, which also afforded 1, 1-bisspiro{11-ethoxycarbonylmethyl-6-oxo-3, 4, 6, 11-tetrahydro-[1, 4, 3] thiazaphos phorino [3, 4-b][1, 3, 2] benzodiazaphosphorine 12-oxide} **3** at the same time in a one-pot procedure, and the mechanism was outlined in **Scheme 2**.

Herein, we wish to report our further investigation on the reaction of 3-alkyl-1-(2bromoethyl)-2, 3-dihydro-1, 3, 2-benzodiazaphosphorin-4(1*H*)-one 2-oxide **4** with carbon disulfide. Preparation of **4** was readily accomplished in a four-step sequence outlined in **Scheme 3** starting from the cheap and available material *o*-aminobenzoic acid. In the presence of triethylamine, $4a^9$ (R = *n*-Pr) was refluxed with carbon disulfide in benzene, which gave fused phosphorus heterocyclic 4-[1'-(*b*-bromoethyl)-4'oxo-3'-propyl-1', 2', 3', 4'-tetrahydro-1, 3, 2-benzodiazaphos phorin-2'-sulfide]-1, 2, 3, 4, 4a, 4b, 5, 6-octahydro-6-oxo-5-propyl-3, 4b, 4a-thiazphosphaphenanthridine 4a, 2'-


^{*} E-mail: jmhuang@public.tpt.tj.cn

dioxide $5a^{10}$ in 89% yield, as shown in **Scheme 4**. This is the first example for such a reaction.


Scheme 1

 $\begin{array}{c} O \\ O \\ N \\ CS_{2}/NaH \\ H^{T}HF, reflux \\ O \\ CH_{2}CO_{2}Et \\ 1 \\ 2 \\ 25\% \\ \end{array} + \begin{array}{c} O \\ P \\ H^{T}HF \\ F \\ EtO_{2}C \\ O \\ S \\ EtO_{2}C \\ O \\ S \\ CO_{2}Et \\ 2 \\ 27\% \\ O \\ S \\ CO_{2}Et \\ 2 \\ 2 \\ 0 \\ CO_{2}Et \\ 2 \\ 2 \\ CO_{2}Et \\ C$

Scheme 3

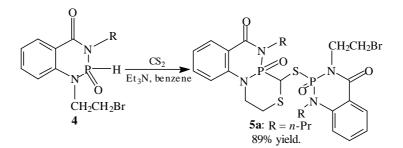
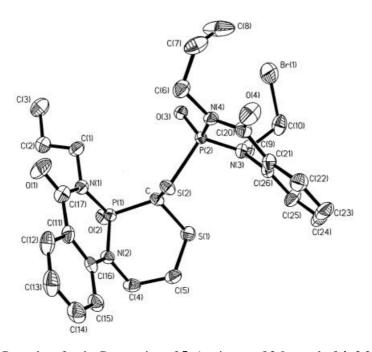



Figure 1 The molecular structure of compound 5a by single crystals X-ray-analysis

General Procedure for the Preparation of **5**: A mixture of 3.0 mmol of **4**, 3.2 mmol of carbon disulfide and 6.0 mmol of dry triethylamine in 20 mL of anhydrous benzene was heated at reflux till the spot of **4** disappeared on silica gel TLC developed with the solvent of ethyl acetate/petroleum ether (2:1), then the produced triethylamine hydrobromide was filtered off. The solvent from the filtrate was removed under reduced pressure and the residue was chromatographed on a column of silica gel using a mixture of 60% ethyl acetate/petroleum ether (60-90°C) to elute the products **5** in excellent yield. The single crystals of **5a** suitable X-ray analysis were obtained by recrystallization from mixture solvent of ethyl acetate and petroleum ether (90 - 120° C).

The structure of the compound 5a was determined by X-ray crystallography and is shown in **Figure 1**. The fused phosphorus heterocyclic **5** has a (O)P-S-C-P(O) bond structure with special consideration given to the biological activity^{7,11}, in which the

Jun Min HUANG et al.

phosphoryl group is of fundamental significance in many of important molecules that control molecular replication, cell biochemistry and metabolic processes in all living species¹². The synthesis of further examples of this ring system and study of their chemistry is in progress.

Acknowledgments

The project was supported by the National Natural Science Foundation of China and Foundation for University Key Teacher by the Ministry of Education.

References and Notes

- 1. H. Fu, G. Z. Tu, Z. L. Li, Y. F. Zhao, Synthesis, 1998, 855.
- 2. J. M. Huang, R. Y. Chen, *Heteroatom Chem.*, 2000, 11, 480.
- 3. B. I. Gorin, C. G. Ferguson, G. R. J. Thatcher, Tetrahedron Lett., 1997, 38, 2791.
- 4. J. M. Huang, R. Y. Chen, Heteroatom Chem., 2001, 12, 97.
- 5. C. Meier, Angew. Chem. Int. Ed. Engl., 1996, 35, 70.
- 6. J. Zhou, Y. G. Qiu, K. S. Feng, R. Y. Chen, *Synthesis*, **1999**, 40, and references cited therein.
- 7. J. Zhou, R. Y. Chen, J. Chem. Soc., Perkin Trans. 1, 1998, 2917.
- 8. R. Y. Chen, R. Bao, *Synthesis*, **1990**, 137.
- 9. **4a**: R = *n*-Pr, mp 82 84°C. ¹H NMR (CDCl₃, 200 MHz, δ_{ppm}): 0.96 (t, 3H, NCH₂CH₂CH₃, ³J_{HH} = 7.4 Hz), 1.77 (m, 2H, NCH₂CH₂CH₃), 3.55 4.12 (m, 6H, PNCH₂CH₂CH₃ + PNCH₂CH₂Br), 6.90 8.26 (m, 4H, C₆H₄), 7.86 (d, 1H, P (O)H, ¹J_{PH} = 645.9 Hz). ³¹P NMR (CDCl₃, 80.96 MHz, δ_{ppm}): 5.95 (s). Anal. calcd. for C₁₂H₁₆BrN₂O₂P: C 43.52, H 4.87, N 8.46; found: C 43.68, H 5.05, N 8.66.
- 10. **5a**: R = n-Pr, 89% yield, mp 192°C (dec.). ¹H NMR (CDCl₃, 200 MHz, δ_{ppm}): 0.96 (m, 6H, 2xNCH₂CH₂CH₃), 1.74 (m, 4H, 2xNCH₂CH₂CH₃), 2.47 (dm, 1H, 1/2×SCH₂CH₂N, ²J_{HH} ≈ 13 Hz), 3.07 (tm, 1H, 1/2×SCH₂CH₂N, ²J_{HH} ≈ ³J_{HH} ≈ 13 Hz), 3.35 4.66 (m, 10H, 2× NCH₂CH₂CH₃ + SCH₂CH₂N+NCH₂CH₂Br), 4.80 (dd, 1H, CH, ²J_{PH} = 17.7 Hz, ³J_{PH} = 14.6 Hz), 6.84 8.22 (m, 8H, 2×C₆H₄). ³¹P NMR (CDCl₃, 80.96 MHz, δ_{ppm}): 10.17 (d), 24.45 (d), ³J_{PP} = 31.6 Hz. Anal. calcd. for C₂₅H₃₁BrN₄O₄P₂S₂: C 45.67, H 4.75, N 8.52; found: C 45.58, H 4.72, N 8.65.
- 11. J. Zhou, R. Y. Chen, X. F. Yang, Heteroatom Chem., 1998, 9, 369.
- 12. V. Sum, C. A. Baird, T. P. Kee, M. Thornton-Pett, J. Chem. Soc., Perkin Trans. 1, 1994, 3183.

Received 11 June, 2001